18Jun. 13
Han creado dos péptidos que al ser irradiados con luz cambian de forma permitiendo o evitando la interacción entre dos proteínas. Así, los péptidos fotosensibles actúan como semáforos que a nuestra voluntad dan luz verde o frenan la endocitosis celular.
La cooperación científica entre químicos, biotecnólogos, farmacólogos y físicos de distintas instituciones catalanas, liderados por Pau Gorostiza, del Institut de Bioenginyeria de Catalunya (IBEC) y Ernest Giralt, del Institut de Recerca Biomèdica (IRB Barcelona) ha dado como fruto un avance que favorecerá el desarrollo de moléculas terapéuticas reguladas con luz. El desarrollo, publicado hoy online en la revista alemana de referencia internacional en química, Angewandte Chemie , ha recibido también la consideración de “Very Important Paper”, que únicamente logran un 5% de los artículos aceptados. Además, será portada en el próximo número de la revista en Julio.
El laboratorio del IRB Barcelona “Diseño, síntesis y estructura de péptidos y proteínas” liderado por el Dr. Giralt, también catedrático de la Universidad de Barcelona y Premio Nacional de Investigación en 2011, ha creado dos péptidos que al ser irradiados con luz cambian de forma permitiendo o evitando la interacción entre dos proteínas. La asociación de estas dos proteínas es necesaria para que se dé la endocitosis, proceso por el cual las células permiten el acceso de componentes hacia su interior a través de la membrana celular. La científica italiana Laura Nevola, investigadora postdoctoral del laboratorio del Dr. Giralt, y Andrés Martín-Quirós, estudiante de doctorado del laboratorio de Dr. Gorostiza, han trabajado durante cuatro años en el diseño de los péptidos fotosensibles y son co-autores del artículo.
“Los péptidos fotosensibles actúan como semáforos que a nuestra voluntad dan luz verde o frenan la endocitosis celular. Son desde ya una herramienta muy potente para la biología celular” explica el Dr. Giralt. “Estas moléculas nos permiten usar luz focalizada como si fuera una “varita mágica” para controlar procesos biológicos e interrogarlos”, añade el físico Pau Gorostiza, profesor ICREA y jefe del grupo “Nanosondas y nanoconmutadores” en el IBEC.
Los investigadores destacan la aplicabilidad inmediata para estudiar, por ejemplo, la endocitosis in vitro en células cancerosas -donde este proceso está descontrolado- lo que permitiría inhibir selectivamente la proliferación de estas células. También para estudiar la biología del desarrollo -donde las células requieren de la endocitosis para modelar su morfología y función celular, procesos que están orquestados con gran precisión espacio-temporal. En este contexto, los péptidos fotosensibles permitirán manipular con patrones de luz el complejo proceso de desarrollo de un organismo multicelular. “A la vista de los resultados, ahora trabajamos para obtener una receta general para diseñar péptidos inhibidores fotoconmutables aplicable a otras interacciones entre proteínas para manipularlas con luz dentro de las células”, avanzan los investigadores.
Hacia la optofarmacología o las moléculas terapéuticas reguladas con luz
“Este primer éxito nos permitirá generar el mismo tipo de péptidos para trabajos con una orientación químico-médica”, dice Giralt. El Dr. Gorostiza es quien propone la idea de manipular con luz procesos biológicos y farmacológicos tras cinco años de especialización en la Universidad de California en Berkeley. Coordinador del proyecto ERC Starting Grant “OpticalBullet (Bala Óptica)” y del ERC Proof of Concept “Theralight”, en los que colabora con el laboratorio de química de Giralt, explica que “las aplicaciones terapéuticas más inmediatas las podríamos esperar para patologías de tejidos superficiales como la piel, la retina o las mucosas más externas”.
La manipulación de procesos biológicos con luz está generando herramientas revolucionarias para la biología y la medicina y abriendo nuevos campos de estudio como la optofarmacología y la optogenética. La combinación de fármacos con dispositivos externos de control de luz puede contribuir al desarrollo de la medicina personalizada en la que las terapias se pueden modular en función de cada paciente, restringir a regiones localizadas por un tiempo determinado, reduciendo sensiblemente los efectos indeseados.
Mejoras en láseres e ingeniería química
Para avanzar en el desarrollo de fármacos fotosensibles, hay que mejorar la respuesta fotoquímica de los compuestos y poder estimular con longitudes de onda visibles. “La iluminación prolongada con luz ultravioleta es tóxica para las células y es una limitación evidente, a lo que se suma la escasa capacidad de penetración en el tejido”, pone como ejemplo Giralt. También hay que hacer pasos hacia una mejor fotoconversión de los compuestos y hacia la estabilidad en la oscuridad para “según interese, diseñarlos de tal modo que se relajen rápidamente cuando se deje de irradiar luz o para que “recuerden” durante horas o días la luz que los ha iluminado”, añade Gorostiza.
En este trabajo también han colaborado investigadores de la Plataforma de Microscopia Digital Avanzada del IRB Barcelona, quienes han diseñado un programa adhoc para poder validar cualitativa y cuantitativamente la acción de los péptidos dentro de las células en tiempo real. Asimismo, el equipo ha contado con el apoyo en biología del grupo del Dr. Artur Llobet del IDIBELL.
© 2024 Medicina Television S.A Spain